Retinal prosthesis safety: alterations in microglia morphology due to thermal damage and retinal implant contact.
نویسندگان
چکیده
PURPOSE In order to develop retinal implants with a large number of electrodes, it is necessary to ensure that they do not cause damage to the neural tissue by the heat that the electrical circuits generate. Knowledge about the threshold of the amount of power that induces damage will assist in developing power budgets for retinal implants. METHODS Heat-induced retinal damage was evaluated by measuring changes in the morphology of the resident immune cells, the microglia, which are the first cells to respond to retinal trauma. Microglial soma and arbor areas were assessed in rat retinal tissues in vitro to determine the effects of increasing temperatures, implant contact, and heating and implant contact combined. RESULTS In response to increasing incubation temperatures (no implant), microglial somas enlarged and arbor areas retracted, indicative of retinal stress. Thermal damage thresholds, defined as a significant change in microglial morphology from that observed at the upper limit of normal body temperature, occurred at a temperature of 38.7 °C. Implant contact, induced when a passive implant was placed on the retina, also caused similar morphological alterations in microglia, indicating retinal damage. Heated-implant contact exacerbated the effects of temperature alone but still resulted in a thermal damage threshold of 38.7 °C, the same as with heating alone. CONCLUSIONS Our conservative recommendations are that implanted retinal electronics keep power dissipations to less than 19 mW/mm(2) to stay below the microglial thermal damage threshold (2.1 °C) and to comply with international standards for implantable devices (2 °C).
منابع مشابه
The Use of an Axisymmetric Formulation of the Finite Volume Method for the Thermal Analysis of the Retina and Ocular Tissues Following Implantation of Retinal Prosthesis
This study analyzes the heat transfer in human eyes following implantation of retinal prostheses using an axisymmetric formulation of the Finite Volume Method. The model used consisted of a vertex centered unstructured grid finite volume method in an edgebased data structure and an explicit time integration. The results of the finite volume thermal analysis in ocular tissues were determined in ...
متن کاملTechniques for Processing Eyes Implanted with a Retinal Prosthesis for Localized Histopathological Analysis: Part 2 Epiretinal Implants with Retinal Tacks
Retinal prostheses for the treatment of certain forms of blindness are gaining traction in clinical trials around the world with commercial devices currently entering the market. In order to evaluate the safety of these devices, in preclinical studies, reliable techniques are needed. However, the hard metal components utilised in some retinal implants are not compatible with traditional histolo...
متن کاملTechniques for Processing Eyes Implanted With a Retinal Prosthesis for Localized Histopathological Analysis
Retinal prostheses for the treatment of certain forms of blindness are gaining traction in clinical trials around the world with commercial devices currently entering the market. In order to evaluate the safety of these devices, in preclinical studies, reliable techniques are needed. However, the hard metal components utilised in some retinal implants are not compatible with traditional histolo...
متن کاملMorphology of retinal photoreceptor layer in continuous light-exposed and dark-adapted male cats
The morphology of retinal photoreceptor layer was studied in continuous light-exposed and dark-adapteddomestic male cats (Felis catus). The eyes of 12 healthy adult cats (4 in continuous light-exposed group, 4 in continuous dark-adapted group, and 4 in control group) were routinely fixed and studied by electron microscope. Results showed that the general structure of photoreceptor layer in this...
متن کاملUsing Temperature of IR Sources for Assessing Photochemical and Aphakic Retinal Hazard
Introduction Blue light is a part of the spectrum with the highest energy content, which can reach the retina. The damage that it can cause to the retina is called photochemical or blue-light retinal injury. For the retinal injury assessment of the photochemical and aphakic retinal hazards in the wavelength range of 300-700 nm, use of effective spectral radiance limits (W.m-2.sr-1) seems to be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 53 12 شماره
صفحات -
تاریخ انتشار 2012